Perbandingan Kinerja Algoritma K-Nearest Neighbors (K-NN) Dan Decision Tree dalam Deteksi Paket Malis pada Jaringan

  • Kasmara B
  • Handayani E
  • Nathasia N
N/ACitations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Abstrak Penelitian ini bertujuan untuk melakukan klasifikasi terhadap data paket malis dan membandingkan performa dua algoritma, yaitu K-Nearest Neighbor (K-NN) dan Decision Tree (DT). Dataset UNSW-NB15 yang digunakan untuk penelitian ini telah melalui tahap preprocessing, feature selection, dan data split. Tahap preprocessing termasuk transformasi data dan pemilihan fitur yang relevan untuk mendeteksi paket malis. Selanjutnya, eksperimen dilakukan untuk menguji variasi nilai K pada K-NN dan mengukur akurasi, recall, precision, dan F1-Score. Hasilnya menunjukkan bahwa K-NN memiliki akurasi 91.54%, sedangkan DT memiliki 92.41%. Kesimpulan dari penelitian ini menunjukkan bahwa algoritma Decision Tree (DT) memiliki kinerja yang sedikit lebih baik daripada K-Nearest Neighbor (K-NN) dalam mendeteksi paket malis. Oleh karena itu, dalam memilih algoritma untuk deteksi keamanan jaringan, penting untuk mempertimbangkan kebutuhan dan tujuan spesifik penelitian serta karakteristik data yang digunakan. Abstract This research aims to classify malicious packet data and compare the performance of two algorithms, namely K-Nearest Neighbor (K-NN) and Decision Tree (DT). The UNSW-NB15 dataset used in this study has undergone preprocessing, feature selection, and data split stages. The preprocessing stage includes data transformation and selection of relevant features to detect malicious packets. Subsequently, experiments were conducted to test various values of K in K-NN and measure accuracy, recall, precision, and F1-Score. The results show that K-NN has an accuracy of 91.54%, while DT has 92.41%. The conclusion of this research indicates that the Decision Tree (DT) algorithm performs slightly better than K-Nearest Neighbor (K-NN) in detecting malicious packets. Therefore, in selecting an algorithm for network security detection, it is important to consider the specific needs and goals of the research as well as the characteristics of the data used.

Cite

CITATION STYLE

APA

Kasmara, B. N., Handayani, E. T. E., & Nathasia, N. D. (2024). Perbandingan Kinerja Algoritma K-Nearest Neighbors (K-NN) Dan Decision Tree dalam Deteksi Paket Malis pada Jaringan. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 8(3), 320. https://doi.org/10.30998/string.v8i3.22362

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free