We develop spectral theory for the generator of the q-Boson (stochastic) particle system. Our central result is a Plancherel type isomorphism theorem for this system. This theorem has various implications. It proves the completeness of the Bethe ansatz for the q-Boson generator and consequently enables us to solve the Kolmogorov forward and backward equations for general initial data. Owing to a Markov duality with q-TASEP (q-deformed totally asymmetric simple exclusion process), this leads to moment formulas which characterize the fixed time distribution of q-TASEP started from general initial conditions. The theorem also implies the biorthogonality of the left and right eigenfunctions. We consider limits of our q-Boson results to a discrete delta Bose gas considered previously by van Diejen, as well as to another discrete delta Bose gas that describes the evolution of moments of the semi-discrete stochastic heat equation (or equivalently, the O'Connell-Yor semi-discrete directed polymer partition function). A further limit takes us to the delta Bose gas which arises in studying moments of the stochastic heat equation/Kardar-Parisi-Zhang equation.
CITATION STYLE
Borodin, A., Corwin, I., Petrov, L., & Sasamoto, T. (2015). Spectral theory for the q-Boson particle system. Compositio Mathematica, 151(1), 1–67. https://doi.org/10.1112/S0010437X14007532
Mendeley helps you to discover research relevant for your work.