CikA Modulates the Effect of KaiA on the Period of the Circadian Oscillation in KaiC Phosphorylation

20Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cyanobacteria contain a circadian oscillator that can be reconstituted in vitro. In the reconstituted circadian oscillator, the phosphorylation state of KaiC oscillates with a circadian period, spending about 12 h in the phosphorylation phase and another 12 h in the dephosphorylation phase. Although some entrainment studies have been performed using the reconstituted oscillator, they were insufficient to fully explain entrainment mechanisms of the cyanobacterial circadian clock due to the lack of input pathway components in the in vitro oscillator reaction mixture. Here, we investigate how an input pathway component, CikA, affects the phosphorylation state of KaiC in vitro. In general, CikA affects the amplitude and period of the circadian oscillation of KaiC phosphorylation by competing with KaiA for the same binding site on KaiB. In the presence of CikA, KaiC switches from its dephosphorylation phase to its phosphorylation phase prematurely, due to an early release of KaiA from KaiB as a result of competitive binding between CikA and KaiA. This causes hyperphosphorylation of KaiC and lowers the amplitude of the circadian oscillation. The period of the KaiC phosphorylation oscillation is shortened by adding increased amounts of CikA. A constant period can be maintained as CikA is increased by proportionally decreasing the amount of KaiA. Our findings give insight into how to reconstitute the cyanobacterial circadian clock in vitro by the addition of an input pathway component, and explain how this affects circadian oscillations by directly interacting with the oscillator components.

Cite

CITATION STYLE

APA

Kaur, M., Ng, A., Kim, P., Diekman, C., & Kim, Y. I. (2019, April 1). CikA Modulates the Effect of KaiA on the Period of the Circadian Oscillation in KaiC Phosphorylation. Journal of Biological Rhythms. SAGE Publications Inc. https://doi.org/10.1177/0748730419828068

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free