We explore the relationship between mid-infrared (mid-IR) and CO rotational line emission from massive star-forming galaxies, which is one of the tightest scalings in the local universe. We assemble a large set of unresolved and moderately (∼1 kpc) spatially resolved measurements of CO (1–0) and CO (2–1) intensity, I CO , and mid-IR intensity, I MIR , at 8, 12, 22, and 24 μ m. The I CO versus I MIR relationship is reasonably described by a power law with slopes 0.7–1.2 and normalization I CO ∼ 1 K km s −1 at I MIR ∼ 1 MJy sr −1 . Both the slopes and intercepts vary systematically with choice of line and band. The comparison between the relations measured for CO (1–0) and CO (2–1) allow us to infer that R 21 ∝ I MIR 0.2 , in good agreement with other work. The 8 μ m and 12 μ m bands, with strong polycyclic aromatic hydrocarbon (PAH) features, show steeper CO versus mid-IR slopes than the 22 and 24 μ m, consistent with PAH emission arising not just from CO-bright gas but also from atomic or CO-dark gas. The CO-to-mid-IR ratio correlates with global galaxy stellar mass ( M ⋆ ) and anticorrelates with star formation rate/ M ⋆ . At ∼1 kpc resolution, the first four PHANGS–JWST targets show CO-to-mid-IR relationships that are quantitatively similar to our larger literature sample, including showing the steep CO-to-mid-IR slopes for the JWST PAH-tracing bands, although we caution that these initial data have a small sample size and span a limited range of intensities.
CITATION STYLE
Leroy, A. K., Bolatto, A. D., Sandstrom, K., Rosolowsky, E., Barnes, Ashley. T., Bigiel, F., … Wilson, C. D. (2023). PHANGS–JWST First Results: A Global and Moderately Resolved View of Mid-infrared and CO Line Emission from Galaxies at the Start of the JWST Era. The Astrophysical Journal Letters, 944(2), L10. https://doi.org/10.3847/2041-8213/acab01
Mendeley helps you to discover research relevant for your work.