A statistical study of magnetospheric electron density using the Cluster spacecraft

13Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Observations from the WHISPER (Waves of High frequency and Sounder for Probing of Electron density by Relaxation) instrument on board Cluster, for the interval spanning 2001–2012, are utilized to determine an empirical model describing the total electron density along closed geomagnetic field lines. The model, representing field lines in the region of 4.5≤L < 9.5, includes dependences on L and magnetic local time. Data verification tests ensured that the WHISPER data set provided unbiased measurements for low-density regions, including comparisons with Plasma Electron and Current Experiment and Electric Field and Waves observations. The model was determined by modeling variations in the electron density along the field lines, which is observed to follow a power law distribution along the geomagnetic field at high latitudes, with power law index values ranging from approximately 0.0 to 1.2. However, a localized peak in electron density close to the magnetic equator is observed, which is described using a Gaussian peak function, with the electron density peak ranging as high as 10 cm−3 above the background power law dependence. The resulting model illustrates some key features of the electron density spatial distribution. The role of the number density distribution, represented by the empirical electron density model, in determining the total plasma mass density is also explored. By combining the empirical electron density model with an empirical average ion mass model, the total plasma mass density distribution is inferred, which includes contributions of both the number density and ion composition of the plasma in the region.

Cite

CITATION STYLE

APA

Sandhu, J. K., Yeoman, T. K., Fear, R. C., & Dandouras, I. (2016). A statistical study of magnetospheric electron density using the Cluster spacecraft. Journal of Geophysical Research: Space Physics, 121(11), 11,042-11,062. https://doi.org/10.1002/2016JA023397

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free