The mutagenic effects of low-energy ions have been identified by genetic studies for decades. Due to the short penetration distance of ions, however, the underlying mechanism(s) is still not quite clarified. Recently, increasing data have been accumulated concerning the existence and manifestation of radiation induced bystander/abscopal effects in vivo in the whole-organism environment. In this study, the bio-effects and the preliminary mechanisms of low energy ion beam irradiation on Medicago truncatula were investigated. The results show that both development and biochemical parameters, such as seed germination, seedling, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly affected by ion beam irradiation. It was also found that ion beam irradiation significantly increased the ROS generation and DNA strand breaks in Medicago truncatula. To further investigate the mechanism(s) underlying the responses, seeds were treated with dimethyl sulfoxide (DMSO), an effective reactive oxygen species (ROS) scavenger, and the results showed that DMSO treatment effectively rescued the seed germination and seedling rates and the morphological parameters of development, suggesting that ROS might play an essential role in the mechanisms of the bio-effects of ion-beam irradiated Medicago truncatula.
CITATION STYLE
Chen, H., Li, F., Yuan, H., Xiao, X., Yang, G., & Wu, L. (2010). Abscopal signals mediated bio-effects in low-energyion irradiated medicago truncatula seeds. Journal of Radiation Research, 51(6), 651–656. https://doi.org/10.1269/jrr.10037
Mendeley helps you to discover research relevant for your work.