C/EBPα and DEK coordinately regulate myeloid differentiation

42Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The transcription factor C/EBPα is a critical mediator of myeloid differentiation and is often functionally impaired in acute myeloid leukemia. Recent studies have suggested that oncogenic FLT3 activity disrupts wild-type C/EBPα function via phosphorylation on serine 21 (S21). Despite the apparent role of pS21 as a negative regulator of C/EBPα transcription activity, the mechanism by which phosphorylation tips the balance between transcriptionally competent and inhibited forms remains unresolved. In the present study, we used immuno-affinity purification combined with quantitative mass spectrometry to delineate the proteins associated with C/EBPα on chromatin. We identified DEK, a protein with genetic links to leukemia, as a member of the C/EBPα complexes, and demonstrate that this association is disrupted by S21 phosphorylation. We confirmed that DEK is recruited specifically to chromatin with C/EBPα to enhance GCSFR3 promoter activation. In addition, we demonstrated that genetic depletion of DEK reduces the ability of C/EBPα to drive the expression of granulocytic target genes in vitro and disrupts G-CSF-mediated granulocytic differentiation of fresh human BM-derived CD34+ cells. Our data suggest that C/EBPα and DEK coordinately activate myeloid gene expression and that S21 phosphorylation on wild-type C/EBPαmediates protein interactions that regulate the differentiation capacity of hematopoietic progenitors. © 2012 by The American Society of Hematology.

Cite

CITATION STYLE

APA

Koleva, R. I., Ficarro, S. B., Radomska, H. S., Carrasco-Alfonso, M. J., Alberta, J. A., Webber, J. T., … Marto, J. A. (2012). C/EBPα and DEK coordinately regulate myeloid differentiation. Blood, 119(21), 4878–4888. https://doi.org/10.1182/blood-2011-10-383083

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free