Density-functional study of pressure-induced phase transitions and electronic properties of Zn2V2O7

14Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

We report a study of the high-pressure behavior of the structural and electronic properties of Zn2V2O7by means of first-principle calculations using the CRYSTAL code. Three different approaches have been used, finding that the Becke-Lee-Yang-Parr functional is the one that best describes Zn2V2O7. The reported calculations contribute to the understanding of previous published experiments. They support the existence of three phase transitions for pressures smaller than 6 GPa. The crystal structure of the different high-pressure phases is reported. We have also made a systematic study of the electronic band-structure, determining the band-gap and its pressure dependence for the different polymorphs. The reported results are compared to previous experimental studies. All the polymorphs of Zn2V2O7have been found to have a wide band gap, with band-gap energies in the near-ultraviolet region of the electromagnetic spectrum.

Cite

CITATION STYLE

APA

Díaz-Anichtchenko, D., Gracia, L., & Errandonea, D. (2021). Density-functional study of pressure-induced phase transitions and electronic properties of Zn2V2O7. RSC Advances, 11(18), 10401–10415. https://doi.org/10.1039/d1ra01413g

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free