Dissolution of palladium metal in solvent leaching system with the presence of oxidizing agent

5Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Platinum group metals (PGMs) are important for the manufacture of advanced materials in the field of catalysts and electronic devices. Since the chemical properties of PGMs are very similar to each other, hydrometallurgical processes should be employed to recover PGMs with high purity from either ores or secondary resources. In hydrometallurgical processes for PGMs, the first step is the dissolution of PGMs. For this purpose, inorganic acid solutions with oxidizing agents are generally employed. In this work, nonaqueous solvent leaching systems with a relatively cheap price were employed to investigate the dissolution of pure palladium (Pd) metal. The solvent leaching systems consisted of concentrated hydrochloric acid solution and commercial extractants such as tributyl phosphate (TBP), 7-hydroxydodecan-6-one oxime (LIX 63), and di-n-octyl sulfide (DOS) in the presence of H2 O2 as an oxidizing agent. Among the three systems, TBP showed the best efficiency for the dissolution of Pd. The effect of several parameters like TBP concentration, temperature, time, stirring speed and the weight ratio of Pd to TBP/HCl/H2 O2 was explored. The dissolution percentage of Pd by the HCl–H2 O2 –TBP system was higher than by the HCl–H2 O–H2 O2 system at the same concentration of HCl and H2 O2 . The role of TBP in enhancing the dissolution of Pd was discussed on the basis of the interaction between HCl and TBP. Compared to aqueous systems, mass transfer is important in the dissolution of Pd metal by the solvent leaching system. Optimum conditions for the complete dissolution of Pd were obtained.

Cite

CITATION STYLE

APA

Nguyen, V. N. H., Song, S. J., & Lee, M. S. (2021). Dissolution of palladium metal in solvent leaching system with the presence of oxidizing agent. Metals, 11(4). https://doi.org/10.3390/met11040575

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free