Ets-1 regulates radial glia formation during vertebrate embryogenesis

16Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Radial glia cells are the first distinguishable glial population derived from neural epithelial cells and serve as guides for migrating neurons and as neural progenitor cells in the developing brain. Despite their functional importance during neural development, the determination and differentiation of these cells remains poorly understood at the molecular level. Ets-1 and Ets-2, Ets (E26 transformation-specific) transcription factors, are vertebrate homologues of Drosophila pointed, which is expressed in a subset of glia cells and promotes different aspects of Drosophila glia cell differentiation. However, it remains unsolved that the function of Ets genes is conserved in vertebrate glia development. Here we report that Ets-1 but not Ets-2 is necessary for Xenopus radial glia formation and the activity of Ets-1 is sufficient for radial glia formation prior to neural tube closure. Furthermore, we show that Ras-MAPK (mitogen activated protein kinase) signaling, which acts as an upstream activator of Ets-1 in other biological processes, also regulates radial glia formation. A mutant form of Ets-1, which is not responsive to Ras-MAPK signaling, inhibits radial glia formation promoted by Ras-MAPK signaling. Together, our results show that Ets-1 activated by Ras-MAPK signaling promotes radial glia formation during Xenopus embryogenesis. ©2007 Landes Bioscience.

Cite

CITATION STYLE

APA

Kiyota, T., Kato, A., & Kato, Y. (2007). Ets-1 regulates radial glia formation during vertebrate embryogenesis. Organogenesis, 3(2), 93–101. https://doi.org/10.4161/org.3.2.5171

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free