Performance evaluation of loraWAN for mission-critical IOT networks

7Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

With the evolution of wireless communication in Internet of Things (IoT) networks, Low Power Wide Area Network (LPWAN) has attracted a lot of attention due to its low cost and low power usages. Some of the LPWAN offerings are mainly proprietary but Long-Range Wide Area Network (LoRaWAN) is an open standard communication protocol (ALOHA-based) for a network using the Long Range (LoRa) in the physical layer. Due to its bi-directional communication and Adaptive Data Rate (ADR) capability, the LoRaWAN gateways are adopted in various IoT networks, like smart city, smart farming, worldwide. However, for wider adoption of LoRaWAN in mission-critical applications, it must be tested for scalability and reliability in various practical scenarios to reduce adverse impact in the system. This paper has conducted an evaluation of scalability and reliability of LoRaWAN using three practical scenarios of IoT systems. The evaluation has considered throughput performance, spreading factor statistics, gateway coverage assessment, and success probability performance of the protocol to reveal the performance of the protocol. The evaluation result shows that LoRaWAN networks are decidedly scalable supporting hundreds or thousands of end devices; however, on the other hand, there is an impression where scalability could be inversely proportional to performance only with an increased number of nodes and not gateways, thus requires a solution at the nodes. Our evaluated result can be very useful not only for designing the LoRaWAN based IoT network but also for improving LoRaWAN data transmission techniques for more reliable data transfer between sensor nodes and gateway.

Author supplied keywords

Cite

CITATION STYLE

APA

Ahmad, A. I., Ray, B., & Chowdhury, M. (2019). Performance evaluation of loraWAN for mission-critical IOT networks. In Communications in Computer and Information Science (Vol. 1113 CCIS, pp. 37–51). Springer. https://doi.org/10.1007/978-3-030-34353-8_3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free