Interpretable machine learning-based individual analysis of acute kidney injury in immune checkpoint inhibitor therapy

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background Acute kidney injury (AKI) is a critical complication of immune checkpoint inhibitor therapy. Since the etiology of AKI in patients undergoing cancer therapy varies, clarifying underlying causes in individual cases is critical for optimal cancer treatment. Although it is essential to individually analyze immune checkpoint inhibitor-treated patients for underlying pathologies for each AKI episode, these analyses have not been realized. Herein, we aimed to individually clarify the underlying causes of AKI in immune checkpoint inhibitor-treated patients using a new clustering approach with Shapley Additive exPlanations (SHAP). Methods We developed a gradient-boosting decision tree-based machine learning model continuously predicting AKI within 7 days, using the medical records of 616 immune checkpoint inhibitor-treated patients. The temporal changes in individual predictive reasoning in AKI prediction models represented the key features contributing to each AKI prediction and clustered AKI patients based on the features with high predictive contribution quantified in time series by SHAP. We searched for common clinical backgrounds of AKI patients in each cluster, compared with annotation by three nephrologists. Results One hundred and twelve patients (18.2%) had at least one AKI episode. They were clustered per the key feature, and their SHAP value patterns, and the nephrologists assessed the clusters' clinical relevance. Receiver operating characteristic analysis revealed that the area under the curve was 0.880. Patients with AKI were categorized into four clusters with significant prognostic differences (p = 0.010). The leading causes of AKI for each cluster, such as hypovolemia, drug-related, and cancer cachexia, were all clinically interpretable, which conventional approaches cannot obtain. Conclusion Our results suggest that the clustering method of individual predictive reasoning in machine learning models can be applied to infer clinically critical factors for developing each episode of AKI among patients with multiple AKI risk factors, such as immune checkpoint inhibitor-treated patients.

Cite

CITATION STYLE

APA

Sakuragi, M., Uchino, E., Sato, N., Matsubara, T., Ueda, A., Mineharu, Y., … Okuno, Y. (2024). Interpretable machine learning-based individual analysis of acute kidney injury in immune checkpoint inhibitor therapy. PLoS ONE, 19(3 MARCH). https://doi.org/10.1371/journal.pone.0298673

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free