Synthesis and application of ion-imprinted polymer for the determination of mercury II in water samples

16Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this study, an innovative analytical methodology capable of selectively identifying and quantifying mercury contamination by the association of solid-phase extraction using ion-imprinted polymers as a sorbent phase and differential pulse anodic stripping voltammetry is proposed. To this end, the ion-imprinted polymers were synthesized and characterized by infrared spectroscopy and atomic force microscopy. The sorption capacities and the selectivity of the ion-imprinted polymers were compared to the ones related to the non-imprinted ones. Next, the experimental parameters of this solid-phase extraction method (IIP-SPE) were evaluated univariately. The selectivity of this polymeric matrix against other cations (Cd II, Pb II, and Cu II) was also evaluated. Limits of detection (LOD) and quantification (LOQ) obtained for the here proposed methodology were 0.322 μg L−1 and 1.08 μg L−1, respectively. Also, the precision of 4.0% was achieved. The method was finally applied to three water samples from different sources: for the Piratininga and Itaipu Lagoon waters, Hg II concentrations were below the LOQ and for Vargem River waters a concentration equal to 1.35 ± 0.07 mg L−1 was determined. These results were confirmed by recovery tests, resulting in a recovery of 96.2 ± 4.0%, and by comparison with flame atomic absorption spectrometry, resulting in statistical conformity between the two methods at 95% confidence level.

Cite

CITATION STYLE

APA

Francisco, J. E., Feiteira, F. N., da Silva, W. A., & Pacheco, W. F. (2019). Synthesis and application of ion-imprinted polymer for the determination of mercury II in water samples. Environmental Science and Pollution Research, 26(19), 19588–19597. https://doi.org/10.1007/s11356-019-05178-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free