Inhibition of endotoxin-induced bacterial translocation in mice

137Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

The primary functions of the gut are to absorb nutrients and exclude bacteria and their products. However, under certain circumstances the gut may lose its barrier function and serve as a reservoir for systemic microbial infections. These experiments were performed to determine the mechanisms whereby endotoxin causes bacteria to escape (translocate) from the gut. Bacteria translocated from the gut to the mesenteric lymph nodes of mice challenged with nonlethal doses of Escherichia coli 026:B6 or E. coli 0111:B4 endotoxin. Physical disruption of the gut mucosal barrier appears to be the primary mechanism whereby endotoxin promotes bacterial translocation. Mucosal injury and endotoxin-induced bacterial translocation were reduced by inhibition (allopurinol) or inactivation (tungsten diet) of xanthine oxidase activity (P < 0.01), but were not affected by the platelet-activation factor antagonists, SRI 63-441 or BN 52021. Because the inhibition or inactivation of xanthine oxidase activity reduced both the extent of mucosal injury and endotoxin-induced bacterial translocation, the effect of endotoxin on the gut appears to be mediated, at least to some degree, by xanthine oxidase-generated, oxygen-free radicals.

Cite

CITATION STYLE

APA

Deitch, E. A., Ma, L., Ma, W. J., Grisham, M. B., Granger, D. N., Specian, R. D., & Berg, R. D. (1989). Inhibition of endotoxin-induced bacterial translocation in mice. Journal of Clinical Investigation, 84(1), 36–42. https://doi.org/10.1172/JCI114164

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free