The impact of peripheral circulation characteristics of typhoon on sustained ozone episodes over the Pearl River Delta region, China

24Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The peripheral circulation of typhoon forms sustained ozone episodes. However, how it impacts the day-to-day ozone pollution levels during the episodes has not been clearly studied, which is crucial for better prediction of the daily ozone variation. In this study, the analysis of ground observation, wind profile data, and model simulation is integrated. By analysing the wind profile radar observations, we found a weak wind deepening (WWD; vertical depth of the weak winds increased), more correlated with the ground-level ozone variation than surface weak wind. Long-term statistical analyses showed that the WWD is a common weather phenomenon in the peripheral subsidence region of typhoons and is generally accompanied by ozone pollution episodes. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) with process analysis simulation showed that the peripheral subsidence chemical formation (CHEM) and vertical mixing (VMIX) effects are two major contributors to the enhancement of ozone levels to form the episode, while the advection (ADV) showed negative values. However, the day-to-day variation of the daytime ozone levels during the episode is not determined by the daily variation of daytime CHEM and VMIX but is dominated by the ADV terms. Therefore, the ozone and its precursors accumulation, including the enhancement during the night-time, contribute to the daytime ozone increase in the following day. A detail day-to-day process analysis showed that in additional to decrease of negative ADV values (e.g. the weakened advection outflow or dispersion) on the ground, the integrated effect of the daily variation of the accumulative CHEM and ADV above the ground throughout the planetary boundary layer (PBL) together determined the overall day-to-day daytime ozone variation on the ground through the VMIX process. The results indicate that the peripheral characteristics of approaching typhoon not only form the ozone episode by the enhanced photochemical reactions, but also could increase the day-to-day daytime ozone levels via pollution accumulation throughout the PBL due to the WWD up to 3-5gkm. These results illustrate the important role of the WWD in the lower troposphere for the formation of sustained ozone episodes due to the peripheral circulation of the typhoon, which helps to better predict the daily changes of daytime ozone levels.

Cite

CITATION STYLE

APA

Li, Y., Zhao, X., Deng, X., & Gao, J. (2022). The impact of peripheral circulation characteristics of typhoon on sustained ozone episodes over the Pearl River Delta region, China. Atmospheric Chemistry and Physics, 22(6), 3861–3873. https://doi.org/10.5194/acp-22-3861-2022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free