Modelling groundwater recharge, actual evaporation, and transpiration in semi-arid sites of the Lake Chad basin: The role of soil and vegetation in groundwater recharge

4Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Lake Chad basin, located in the centre of northern Africa, is characterized by strong climate seasonality with a pronounced short annual precipitation period and high potential evapotranspiration. Groundwater is an essential source for drinking-water supply, as well as for agriculture and groundwater-related ecosystems. Thus, assessment of groundwater recharge is very important although also difficult because of the strong effects of evaporation and transpiration, as well as the limited available data. A simple, generalized approach, which requires only limited field data, freely available remote sensing data, and well-established concepts and models, is tested for assessing groundwater recharge in the southern part of the basin. This work uses the FAO dual-Kc concept to estimate E and T coefficients at six locations that differ in soil texture, climate, and vegetation conditions. Measured values of soil water content and chloride concentrations along vertical soil profiles together with different scenarios for E and T partitioning and a Bayesian calibration approach are used to numerically simulate water flow and chloride transport using Hydrus-1D. Average groundwater recharge rates and the associated model uncertainty at the six locations are assessed for the 2003-2016 time period. Annual groundwater recharge varies between 6 and 93mm and depends strongly on soil texture and related water retention and on vegetation. Interannual variability of groundwater recharge is generally greater than the uncertainty of the simulated groundwater recharge.

Cite

CITATION STYLE

APA

Neukum, C., Morales-Santos, A., Ronelngar, M., Bala, A., & Vassolo, S. (2023). Modelling groundwater recharge, actual evaporation, and transpiration in semi-arid sites of the Lake Chad basin: The role of soil and vegetation in groundwater recharge. Hydrology and Earth System Sciences, 27(19), 3601–3619. https://doi.org/10.5194/hess-27-3601-2023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free