This article reviews efforts in accurate experimental charge-density studies with relevance to medicinal chemistry. Initially, classical charge-density studies that measure electron density distribution via least-squares refinement of aspherical-atom population parameters are summarized. Next, interaction density is discussed as an idealized situation resembling drug-receptor interactions. Scattering-factor databases play an increasing role in charge-density research, and they can be applied both to small-molecule and macromolecular structures in refinement and analysis; software development facilitates their use. Therefore combining both of these complementary branches of X-ray crystallography is recommended, and examples are given where such a combination already proved useful. On the side of the experiment, new pixel detectors are allowing rapid measurements, thereby enabling both high-throughput small-molecule studies and macromolecular structure determination to higher resolutions. Currently, the most ambitious studies compute intermolecular interaction energies of drug-receptor complexes, and it is recommended that future studies benefit from recent method developments. Selected new developments in theoretical charge-density studies are discussed with emphasis on its symbiotic relation to crystallography.
CITATION STYLE
Dittrich, B., & Matta, C. F. (2014, October 10). Contributions of charge-density research to medicinal chemistry. IUCrJ. International Union of Crystallography. https://doi.org/10.1107/S2052252514018867
Mendeley helps you to discover research relevant for your work.