Photosynthetic reaction centers (RCs) and their core light-harvesting complexes (LH1-RCs), purified from a thermophile, Thermochromatium (T.) tepidum, and a mesophile, Allochromatium (A.) vinosum, were reconstituted into liposomes. The RC and the LH1-RC in the reconstituted liposomes were found intact from the absorption spectra at about 4 and 40°C respectively. The thermal stability of the RCs of T. tepidum in the liposome was dependent on whether they were surrounded directly by lipids or by the core light-harvesting complexes. The results show that the RC of T. tepidum gains its thermostability through interactions with the LH1. These results are consistent with the result that the thermal stability of the LH1 in T. tepidum is similar in both the reconstituted LH1-RC liposome and ICM. This is clearly different from the mesophilic bacterium, A. vinosum. The thermal stability of RC was also affected by its subunit constitution: the RC containing a cytochrome subunit was more thermostable than the cytochrome-detached RC. This suggests that the cytochrome subunit might play a role in protecting the special pair pigments from denaturation. The thermal denaturation showed a second-order reaction dependence on time. The interaction of the pigments with proteins and/or lipids might be the cause of the second-order reaction profile.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Kobayashi, M., Fujioka, Y., Mori, T., Terashima, M., Suzuki, H., Shimada, Y., … Nozawa, T. (2005). Reconstitution of photosynthetic reaction centers and core antenna-reaction center complexes in liposomes and their thermal stability. Bioscience, Biotechnology and Biochemistry, 69(6), 1130–1136. https://doi.org/10.1271/bbb.69.1130