The riddle of mitochondrial alkaline/neutral invertases: A novel Arabidopsis isoform mainly present in reproductive tissues and involved in root ROS production

18Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

Alkaline/neutral invertases (A/N-Inv), glucosidases that irreversibly hydrolyze sucrose into glucose and fructose, play significant roles in plant growth, development, and stress adaptation. They occur as multiple isoforms located in the cytosol or organelles. In Arabidopsis thaliana, two mitochondrial A/N-Inv genes (A/N-InvA and A/N-InvC) have already been investigated. In this study, we functionally characterized A/N-InvH, a third Arabidopsis gene coding for a mitochondrial-targeted protein. The phenotypic analysis of knockout mutant plants (invh) showed a severely reduced shoot growth, while root development was not affected. The emergence of the first floral bud and the opening of the first flower were the most affected stages, presenting a significant delay. A/N-InvH transcription is markedly active in reproductive tissues. It is also expressed in the elongation and apical meristem root zones. Our results show that A/N-InvH expression is not evident in photosynthetic tissues, despite being of relevance in developmental processes and mitochondrial functional status. NaCl and mannitol treatments increased A/N-InvH expression twofold in the columella root cap. Moreover, the absence of A/N-InvH prevented ROS formation, not only in invh roots of salt- and ABA-treated seedlings but also in invh control roots. We hypothesize that this isoform may take part in the ROS/sugar (sucrose or its hydrolysis products) signaling pathway network, involved in reproductive tissue development, cell elongation, and abiotic stress responses.

Cite

CITATION STYLE

APA

Battaglia, M. E., Martin, M. V., Lechner, L., Martínez-Noël, G. M. A., & Salerno, G. L. (2017). The riddle of mitochondrial alkaline/neutral invertases: A novel Arabidopsis isoform mainly present in reproductive tissues and involved in root ROS production. PLoS ONE, 12(9). https://doi.org/10.1371/journal.pone.0185286

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free