Adaptive density-based robust topology optimization under uncertain loads using parallel computing

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This work presents an efficient parallel implementation of density-based robust topology optimization (RTO) using adaptive mesh refinement (AMR) schemes permitting us to address the problem with modest computational resources. We use sparse grid stochastic collocation methods (SCMs) for transforming the RTO problem into a weighted multiple-loading deterministic problem at the collocation points. The calculation of these deterministic problems and the functional sensitivity is computationally expensive. We combine distributed-memory parallel computing and AMR techniques to address the problem efficiently. The former allows us to exploit the computational resources available, whereas the latter permits us to increase performance significantly. We propose the parallel incremental calculation of the deterministic problems and the contribution to the functional sensitivity maintaining a similar memory allocation to the one used in the deterministic counterpart. The cumulative computing uses buffers to adapt the evaluation at the collocation points to the parallel computing resources permitting the exploitation of the embarrassing parallelism of SCMs. We evaluate the deterministic problems in a coarse mesh generated for each topology optimization iteration to increase the performance. We perform the regularization and design variable update in a fine mesh to obtain an equivalent design to the one generated in such a mesh. We evaluate the proposal in two- and three-dimensional problems to test its feasibility and scalability. We also check the performance improvement using computational buffers in parallel computing nodes. Finally, we compare the proposal to the same approach using different preconditioners without AMR schemes showing significant performance improvements.

Cite

CITATION STYLE

APA

Herrero-Pérez, D., Picó-Vicente, S. G., & Martínez-Barberá, H. (2024). Adaptive density-based robust topology optimization under uncertain loads using parallel computing. Engineering with Computers, 40(1), 21–43. https://doi.org/10.1007/s00366-023-01823-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free