Since Phalaenopsis orchids are CAM plants, learning how they respond to night temperature warmer than the day would help regulate their production. On 1 Apr. 2003, P. amabilis plants were subjected to day/night temperatures at 30/25, 25/30, 25/20, 20/25, 20/15, or 15/20 °C under 140 μmol·m -2 ·s -1 PPF . After 4 months, the total length of new leaves was shorter as a result of fewer and shorter new leaves when nights were cooler than the days and as the average daily temperature declined. More spikes were produced at 25/20 and 20/25 °C than at 20/15 or 15/20 °C. In another experiment, P. amabilis plants were moved to the above conditions on 12 Aug. Plants exposed to 30/25 or 25/30 °C had more leaf growth than at lower temperatures, but no flowering. Plants that were exposed to 25/20 or 20/25 °C spiked in 2 weeks; but plants took 20 and 18 d to spike under 20/15 or 15/20 °C, respectively. Again, as average daily temperature decreased, there was less leaf growth. Cooler day than the night reduced vegetative growth, regardless of temperature. Plants at 25/20 or 20/25 °C had higher flower count (12) than those at 20/15 or 15/20 °C (8). In a third experiment, plants of a large-flowered Doritaenopsis hybrid spiked at 22–24 d when exposed to 25/20 or 20/25 °C, whereas 30-33 d were needed to spike under 20/15 or 15/20 °C. In a fourth experiment, a Doritaenopsis hybrid spiked after 22, 21, or 25 d under 25/25, 25/20, or 20/20 °C. However, 37 d was required to spike under 20/15 °C. These results suggest that the best temperature range for spiking these orchids is 25 to 20 °C and a day/night temperature differential is not needed for spiking when temperature is at or below 25 °C.
CITATION STYLE
Wang, Y.-T. (2019). (76) Thermal Effects on Vegetative Growth and Reproductive Behavior of Phalaenopsis Orchids. HortScience, 40(4), 1014E – 1015. https://doi.org/10.21273/hortsci.40.4.1014e
Mendeley helps you to discover research relevant for your work.