Random perturbations of dynamical systems and diffusion processes with conservation laws

35Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper we consider random perturbations of dynamical systems and diffusion processes with a first integral. We calculate, under some assumptions, the limiting behavior of the slow component of the perturbed system in an appropriate time scale for a general class of perturbations. The phase space of the slow motion is a graph defined by the first integral. This is a natural generalization of the results concerning random perturbations of Hamiltonian systems. Considering diffusion processes as the unperturbed system allows to study the multidimensional case and leads to a new effect: the limiting slow motion can spend non-zero time at some points of the graph. In particular, such delay at the vertices leads to more general gluing conditions. Our approach allows one to obtain new results on singular perturbations of PDE's.

Cite

CITATION STYLE

APA

Freidlin, M., & Weber, M. (2004). Random perturbations of dynamical systems and diffusion processes with conservation laws. Probability Theory and Related Fields, 128(3), 441–466. https://doi.org/10.1007/s00440-003-0312-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free