An Intelligent Epileptic Prediction System Based on Synchrosqueezed Wavelet Transform and Multi-Level Feature CNN for Smart Healthcare IoT

7Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Epilepsy is a common neurological disease worldwide, characterized by recurrent seizures. There is currently no cure for epilepsy. However, seizures can be controlled by drugs and surgeries in about 70% of epileptic patients. A timely and accurate prediction of seizures can prevent injuries during seizures and improve the patients’ quality of life. In this paper, we proposed an intelligent epileptic prediction system based on Synchrosqueezed Wavelet Transform (SWT) and Multi-Level Feature Convolutional Neural Network (MLF-CNN) for smart healthcare IoT network. In this system, we used SWT to map EEG signals to the frequency domain, which was able to measure the energy changes in EEG signals caused by seizures within a well-defined Time-Frequency (TF) plane. MLF-CNN was then applied to extract multi-level features from the processed EEG signals and classify the different seizure segments. The performance of our proposed system was evaluated with the publicly available CHB-MIT dataset and our private ZJU4H dataset. The system achieved an accuracy of 96.99% and 94.25%, a sensitivity of 96.48% and 97.76%, a specificity of 97.46% and 94.07% and a false prediction rate (FPR/h) of 0.031 and 0.049 FPR/h on the CHB-MIT dataset and the ZJU4H dataset, respectively.

Cite

CITATION STYLE

APA

Song, K., Fang, J., Zhang, L., Chen, F., Wan, J., & Xiong, N. (2022). An Intelligent Epileptic Prediction System Based on Synchrosqueezed Wavelet Transform and Multi-Level Feature CNN for Smart Healthcare IoT. Sensors, 22(17). https://doi.org/10.3390/s22176458

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free