Activity coefficients of aqueous electrolytes from implicit-water molecular dynamics simulations

9Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We obtain activity coefficients in NaCl and KCl solutions from implicit-water molecular dynamics simulations, at 298.15 K and 1 bar, using two distinct approaches. In the first approach, we consider ions in a continuum with constant relative permittivity (ɛr) equal to that of pure water; in the other approach, we take into account the concentration-dependence of ɛr, as obtained from explicit-water simulations. Individual ion activity coefficients (IIACs) are calculated using gradual insertion of single ions with uniform neutralizing backgrounds to ensure electroneutrality. Mean ionic activity coefficients (MIACs) obtained from the corresponding IIACs in simulations with constant ɛr show reasonable agreement with experimental data for both salts. Surprisingly, large systematic negative deviations are observed for both IIACs and MIACs in simulations with concentration-dependent ɛr. Our results suggest that the absence of hydration structure in implicit-water simulations cannot be compensated by correcting for the concentration-dependence of the relative permittivity ɛr. Moreover, even in simulations with constant ɛr for which the calculated MIACs are reasonable, the relative positioning of IIACs of anions and cations is incorrect for NaCl. We conclude that there are severe inherent limitations associated with implicit-water simulations in providing accurate activities of aqueous electrolytes, a finding with direct relevance to the development of electrolyte theories and to the use and interpretation of implicit-solvent simulations.

Cite

CITATION STYLE

APA

Saravi, S. H., & Panagiotopoulos, A. Z. (2021). Activity coefficients of aqueous electrolytes from implicit-water molecular dynamics simulations. Journal of Chemical Physics, 155(18). https://doi.org/10.1063/5.0064963

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free