We propose a scheme for preparing nanomechanical oscillators in nonclassical steady states, characterized by a pronounced negative Wigner function. In our optomechanical approach, the mechanical oscillator couples to multiple laser-driven resonances of an optical cavity. By lowering the resonance frequency of the oscillator via an inhomogeneous electrostatic field, we significantly enhance its intrinsic geometric nonlinearity per phonon. This causes the motional sidebands to split into separate spectral lines for each phonon number and transitions between individual phonon Fock states can be selectively addressed. We show that this enables the preparation of the nanomechanical oscillator in a single-phonon Fock state. Our scheme can, for example, be implemented with a carbon nanotube dispersively coupled to the evanescent field of a state of the art whispering gallery mode microcavity. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
CITATION STYLE
Rips, S., Kiffner, M., Wilson-Rae, I., & Hartmann, M. J. (2012). Steady-state negative Wigner functions of nonlinear nanomechanical oscillators. New Journal of Physics, 14. https://doi.org/10.1088/1367-2630/14/2/023042
Mendeley helps you to discover research relevant for your work.