Steady-state negative Wigner functions of nonlinear nanomechanical oscillators

84Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We propose a scheme for preparing nanomechanical oscillators in nonclassical steady states, characterized by a pronounced negative Wigner function. In our optomechanical approach, the mechanical oscillator couples to multiple laser-driven resonances of an optical cavity. By lowering the resonance frequency of the oscillator via an inhomogeneous electrostatic field, we significantly enhance its intrinsic geometric nonlinearity per phonon. This causes the motional sidebands to split into separate spectral lines for each phonon number and transitions between individual phonon Fock states can be selectively addressed. We show that this enables the preparation of the nanomechanical oscillator in a single-phonon Fock state. Our scheme can, for example, be implemented with a carbon nanotube dispersively coupled to the evanescent field of a state of the art whispering gallery mode microcavity. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Cite

CITATION STYLE

APA

Rips, S., Kiffner, M., Wilson-Rae, I., & Hartmann, M. J. (2012). Steady-state negative Wigner functions of nonlinear nanomechanical oscillators. New Journal of Physics, 14. https://doi.org/10.1088/1367-2630/14/2/023042

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free