Objectives: 18F-fluorodeoxyglucose (FDG) PET/CT has been widely used in tumor diagnosis, staging, and response evaluation. To determine an optimal therapeutic strategy for lung cancer patients, accurate staging is essential. Semi-quantitative standardized uptake value (SUV) is known to be affected by multiple factors and may fail to differentiate between benign and malignant lesions. Lymph nodes (LNs) in the mediastinal and pulmonary hilar regions with high FDG uptake due to granulomatous lesions such as tuberculosis, which has a high prevalence in China, pose a diagnostic challenge. This study aims to evaluate the diagnostic value of the quantitative metabolic parameters derived from dynamic 18F-FDG PET/CT in differentiating metastatic and non-metastatic LNs in lung cancer. Methods: One hundred and eight patients with pulmonary nodules were enrolled to perform 18F-FDG PET/CT dynamic + static imaging with informed consent. One hundred and thirty-five LNs in 29 lung cancer patients were confirmed by pathology. Static image analysis parameters including LN-SUVmax, LN-SUVmax/primary tumor SUVmax (LN-SUVmax/PT-SUVmax), mediastinal blood pool SUVmax (MBP-SUVmax), LN-SUVmax/MBP-SUVmax, and LN-SUVmax/short diameter. Quantitative parameters including K1, k2, k3 and Ki and of each LN were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. Ki/K1 was computed subsequently as a separate marker. We further divided the LNs into mediastinal LNs (N=82) and pulmonary hilar LNs (N=53). Wilcoxon rank-sum test or Independent-samples T-test and receiver-operating characteristic (ROC) analysis was performed on each parameter to compare the diagnostic efficacy in differentiating lymph node metastases from inflammatory uptake. P<0.05 were considered statistically significant. Results: Among the 135 FDG-avid LNs confirmed by pathology, 49 LNs were non-metastatic, and 86 LNs were metastatic. LN-SUVmax, MBP-SUVmax, LN-SUVmax/MBP-SUVmax, and LN-SUVmax/short diameter couldn’t well differentiate metastatic from non-metastatic LNs (P>0.05). However, LN-SUVmax/PT-SUVmax have good performance in the differential diagnosis of non-metastatic and metastatic LNs (P=0.039). Dynamic metabolic parameters in addition to k3, the parameters including K1, k2, Ki, and Ki/K1, on the other hand, have good performance in the differential diagnosis of metastatic and non-metastatic LNs (P=0.045, P=0.001, P=0.001, P=0.001, respectively). For ROC analysis, the metabolic parameters Ki (AUC of 0.672 [0.579-0.765], sensitivity 0.395, specificity 0.918) and Ki/K1 (AUC of 0.673 [0.580-0.767], sensitivity 0.570, specificity 0.776) have good performance in the differential diagnosis of metastatic from non-metastatic LNs than SUVmax (AUC of 0.596 [0.498-0.696], sensitivity 0.826, specificity 0.388), included the mediastinal region and pulmonary hilar region. Conclusion: Compared with SUVmax, quantitative parameters such as K1, k2, Ki and Ki/K1 showed promising results for differentiation of metastatic and non-metastatic LNs with high uptake. The Ki and Ki/K1 had a high differential diagnostic value both in the mediastinal region and pulmonary hilar region.
CITATION STYLE
Wumener, X., Zhang, Y., Wang, Z., Zhang, M., Zang, Z., Huang, B., … Sun, T. (2022). Dynamic FDG-PET imaging for differentiating metastatic from non-metastatic lymph nodes of lung cancer. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.1005924
Mendeley helps you to discover research relevant for your work.