Vocational students and beginning professionals typically find it hard to integrate the mathematics and statistics that they have learned at school with work-related knowledge. To explore how such an integration process could be supported, we conducted an intervention in secondary vocational laboratory education. Our boundary-crossing approach was informed by the literature on boundary crossing and accompanying learning mechanisms (e.g., reflection in the form of perspective making and taking, and transformation in the form of hybridization). We hypothesized that reflection, as making and taking perspectives on school-taught and work-related knowledge, could lead to transformation, i.e., help students integrate these types of knowledge into a hybridized whole. Data collection included video and audio recordings of five 1-h meetings with three students, the data from their research projects, and interviews with the teacher and two workplace supervisors. The analysis of the students' reasoning during the meetings revealed that their level of integrating school-taught statistics and work-related knowledge increased significantly and with a medium effect size. This suggests that a boundary-crossing approach can support students in integrating school-taught and work-related knowledge. © 2013 The Author(s).
CITATION STYLE
Bakker, A., & Akkerman, S. F. (2014). A boundary-crossing approach to support students’ integration of statistical and work-related knowledge. Educational Studies in Mathematics, 86(2), 223–237. https://doi.org/10.1007/s10649-013-9517-z
Mendeley helps you to discover research relevant for your work.