Discovery of a novel rumen methanogen in the anaerobic fungal culture and its distribution in the rumen as revealed by real-time PCR

16Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The novel archaea belonging to Rumen Cluster C (RCC), which may play an important role in methane production in the rumen have received increased attention. However, the present information on RCC in the rumen is limited by the unsuccessful isolation of axenic pure RCC from the rumen. In the present study, RCC grown in anaerobic fungal subcultures was identified by the molecular and culture methods. Results: A novel RCC species existing in the fungal subcultures was identified and demonstrated by the 16S rRNA gene clone library. Interestingly, the novel RCC species survived in the fungal cultures over all the subculture transferring, even in the 62nd subculture, in contrast to the other methanogens, which disappeared during subcultures. Further work showed that subculture transfer frequency significantly affected the relative abundance of the novel RCC species in the fungal subcultures. The five-day and seven-day transfer frequencies increased the relative abundance of the RCC species (P<0.05). In addition, quantitative real-time PCR revealed that high concentrate diets did not affect the abundance of archaea, but numerically reduced the abundance of the novel RCC species in the rumen. In addition, the relative abundance of the RCC species was numerically higher in the rumen liquid fraction than in the rumen epithelium and solid fractions. Finally, a purified fungal culture containing the RCC species was successfully obtained. PCR and sequencing analysis showed that the novel RCC species contained a mcrA gene, which is known to play a crucial role in methanogenesis, and thus could be identified as a methanogen. Conclusion: In this study, a novel RCC species was identified as a methanogen and closely associated with anaerobic fungi. This novel approach by using co-culture with anaerobic fungi may provide a feasible way to culture and investigate not yet identified methanogens. © 2014 Jin et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Jin, W., Cheng, Y. F., Mao, S. Y., & Zhu, W. Y. (2014). Discovery of a novel rumen methanogen in the anaerobic fungal culture and its distribution in the rumen as revealed by real-time PCR. BMC Microbiology, 14(1). https://doi.org/10.1186/1471-2180-14-104

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free