Measurement of intrinsic and scattering attenuation of shear waves in two sedimentary basins and comparison to crystalline sites in Germany

36Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We developed an improved method for the separation of intrinsic and scattering attenuation of seismic shear waves by envelope inversion called Qopen. The method optimizes the fit between Green's functions for the acoustic, isotropic radiative transfer theory and observed energy densities of earthquakes. The inversion allows the determination of scattering and intrinsic attenuation, site corrections and spectral source energies for the investigated frequency bands. Source displacement spectrumand the seismic moment of the analysed events can be estimated from the obtained spectral source energies. We report intrinsic and scattering attenuation coefficients of shear waves near three geothermal reservoirs in Germany for frequencies between 1 and 70 Hz. The geothermal reservoirs are located in Insheim, Landau (both Upper Rhine Graben) and Unterhaching (Molasse basin). We compare these three sedimentary sites to two sites located in crystalline rock with respect to scattering and intrinsic attenuation. The inverse quality factor for intrinsic attenuation is constant in sediments for frequencies smaller than 10Hz and decreasing for higher frequencies. For crystalline rock, it is on a lower level and strictly monotonic decreasing with frequency. Intrinsic attenuation dominates scattering except for the Upper Rhine Graben, where scattering is dominant for frequencies below 10Hz. Observed source displacement spectra show a high-frequency fall-off greater than or equal to 3.

Cite

CITATION STYLE

APA

Eulenfeld, T., & Wegler, U. (2016). Measurement of intrinsic and scattering attenuation of shear waves in two sedimentary basins and comparison to crystalline sites in Germany. Geophysical Journal International, 205(2), 744–757. https://doi.org/10.1093/gji/ggw035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free