A DFT Study of Some Structural and Spectral Properties of 4-Methoxyacetophenone Thiosemicarbazone and Its Complexes with Some Transition Metal Chlorides: Potent Antimicrobial Agents

  • Ghogomu J
  • Nkungli N
N/ACitations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent studies have shown that 4-methoxyacetophenone thiosemicarbazone (MAPTSC) and its complexes with some transition metal chlorides are potent antimicrobial agents. To deepen the understanding of their structure-activity relationships necessary for rational drug design, their structural and spectral properties, along with thione-thiol tautomerism of MAPTSC, have been studied herein using the density functional theory (DFT). From our results, the thione tautomer of MAPTSC is more stable than the thiol counterpart in ethanolic solution, and thione-to-thiol tautomerization is highly precluded at ambient temperature (25°C) by a high barrier height ≈46.41 kcal/mol. MAPTSC can therefore exist as a mixture of the thione (major) and thiol (minor) tautomers in ethanolic solution at room and higher temperatures. Conformational analysis has revealed five possible conformers of the thione tautomer, of which two are stable enough to be isolated at 25°C. Based on our computed values of MAPTSC-metal(II) binding energies, enthalpies, and Gibbs free energies, the thione tautomer of MAPTSC exhibits a higher affinity for the d 8 metal ions Ni(II), Pd(II), and Pt(II) and can therefore efficiently chelate them in chemical and biological systems. Natural population analysis has revealed ligand-metal charge transfer in the MAPTSC complexes studied. A good agreement has been found between calculated and experimentally observed spectral properties (IR, UV-Vis, and NMR).

Cite

CITATION STYLE

APA

Ghogomu, J. N., & Nkungli, N. K. (2016). A DFT Study of Some Structural and Spectral Properties of 4-Methoxyacetophenone Thiosemicarbazone and Its Complexes with Some Transition Metal Chlorides: Potent Antimicrobial Agents. Advances in Chemistry, 2016, 1–15. https://doi.org/10.1155/2016/9683630

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free