Mitochondrial translocation of pro-apoptotic Bax prior to apoptosis is well established after treatment with many cell death stimulants or under apoptosis-inducing conditions. The mechanism of mitochondrial translocation of Bax is, however, still unknown. The aim of this work was to investigate the mechanism of Bax activation and mitochondrial translocation to initiate apoptosis of human hepatoma HepG2 and porcine kidney LLC-PK1 cells exposed to various cell death agonists. Phosphorylation of Bax by JNK and p38 kinase activated after treatment with staurosporine, H2O2, etoposide, and UV light was demonstrated by the shift in the pI value of Bax on two-dimensional gels and confirmed by metabolic labeling with inorganic [ 32P]phosphate in HepG2 cells. Specific inhibitors of JNK and p38 kinase significantly inhibited Bax phosphorylation and mitochondrial translocation and apoptosis of HepG2 cells. A specific small interfering RNA to MAPKK4 (the upstream protein kinase of JNK and p38 kinase) markedly decreased the levels of MAPKK4 and MAPKK3/6, blocked the activation of JNK or p38 kinase, and inhibited Bax phosphorylation. However, the negative control small interfering RNA did not cause these changes. Confocal microscopy of various Bax mutants showed differential rates of mitochondrial translocation of Bax before and after staurosporine treatment. Among the Bax mutants, T167D did not translocate to mitochondria after staurosporine exposure, suggesting that Thr167 is a potential phosphorylation site. In conclusion, our results demonstrate, for the first time, that Bax is phosphorylated by stress-activated JNK and/or p38 kinase and that phosphorylation of Bax leads to mitochondrial translocation prior to apoptosis.
CITATION STYLE
Kim, B. J., Ryu, S. W., & Song, B. J. (2006). JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. Journal of Biological Chemistry, 281(30), 21256–21265. https://doi.org/10.1074/jbc.M510644200
Mendeley helps you to discover research relevant for your work.