Oxidative stress and neuroinflammation are the key factors leading to secondary brain injury after intracerebral hemorrhage (ICH). We investigated the effects of miR-27b, an oxidative stress-responsive microRNA, on ICH-induced brain injury in rats. The ICH model was induced by intracerebral injection of collagenase. Following ICH, miR-27b expression in the striatum was reduced, whereas expression of Nrf2 mRNA and protein was increased. In PC12 cells, overexpression of miR-27b reduced expression of Nrf2, Hmox1, Sod1 and Nqo1, while miR-27b inhibition had the opposite effects. Dual luciferase reporter assays showed that Nrf2 mRNA was a direct target of miR-27b. Intracerebroventricular injection of miR-27b antagomir and transfection of miR-27b inhibitor inhibited endogenous miR-27b in rats and PC12 cells, respectively. MiR-27b antagomir promoted activation of the ICH-induced Nrf2/ARE pathway and reduced the lipid peroxidation, neuroinflammation, cell death and neurological deficits otherwise seen after ICH. In PC12 cells, the miR-27b inhibitor diminished iron-induced oxidative stress, inflammation and apoptosis, and those effects were blocked by Nrf2 knockdown. These results demonstrate that miR-27b inhibition alleviates ICHinduced brain injury, which may be explained in part by its regulation on the Nrf2/ ARE pathway.
CITATION STYLE
Xu, W., Li, F., Liu, Z., Xu, Z., Sun, B., Cao, J., & Liu, Y. (2017). MicroRNA-27b inhibition promotes Nrf2/ARE pathway activation and alleviates intracerebral hemorrhage-induced brain injury. Oncotarget, 8(41), 70669–70684. https://doi.org/10.18632/oncotarget.19974
Mendeley helps you to discover research relevant for your work.