Measuring and testing dependence by correlation of distances

1.9kCitations
Citations of this article
915Readers
Mendeley users who have this article in their library.

Abstract

Distance correlation is a new measure of dependence between random vectors. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but unlike the classical definition of correlation, distance correlation is zero only if the random vectors are independent. The empirical distance dependence measures are based on certain Euclidean distances between sample elements rather than sample moments, yet have a compact representation analogous to the classical covariance and correlation. Asymptotic properties and applications in testing independence are discussed. Implementation of the test and Monte Carlo results are also presented. © Institute of Mathematical Statistics, 2007.

Cite

CITATION STYLE

APA

Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. Annals of Statistics, 35(6), 2769–2794. https://doi.org/10.1214/009053607000000505

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free