Currently available TNT sensors are characterized by high sensitivity, but low specificity, which limits the detection of TNT in dirty environments. We report here a TNT sensor designed to measure the displacement of a TNT-specific antibody by quartz crystal microbalance (QCM). This sensor combines high sensitivity of detection (0.1 ng/mL) with the ability to distinguish TNT from molecules with similar chemical properties. Particularly, the reliability of this method for the detection of TNT in dirty environments was investigated by using fertilizer solution and artificial seawater. Instead of measuring actual binding of TNT, the method described is based on the displacement of an anti-TNT antibody, which allows quantifying the concentration of TNT in solution with higher sensitivity. In addition, by utilizing the rate of antibody displacement, the detection time is significantly decreased from hours, which would be necessary to measure the frequency change at equilibrium, to minutes. A Langmuir kinetic model was used to describe the molecular interactions on the surface of the sensor and to establish a standard curve to estimate on-site TNT detection. In summary, QCM detection of anti-TNT antibody displacement provides a method for rapid detection of TNT with high sensitivity and specificity.
CITATION STYLE
Wang, J., Makhaita, M. A., & Biswal, S. L. (2012). Sensitive Detection of TNT using Competition Assay on Quartz Crystal Microbalance. Journal of Biosensors & Bioelectronics, 03(01). https://doi.org/10.4172/2155-6210.1000115
Mendeley helps you to discover research relevant for your work.