Magnetic Graphene-Based Nanosheets with Pluronic F127-Chitosan Biopolymers Encapsulated α-Mangosteen Drugs for Breast Cancer Cells Therapy

6Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

In this study, multifunctional chitosan-pluronic F127 with magnetic reduced graphene oxide (MRGO) nanocomposites were developed through the immobilization of chitosan and an amphiphilic polymer (pluronic F127) onto the MRGO. Physicochemical characterizations and in-vitro cytotoxicity of nanocomposites were investigated through field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, particle size analysis, vibrating sample magnetometer, Raman spectroscopy and resazurin-based in-vitro cytotoxicity assay. FESEM observation shows that the magnetic nanoparticles could tethered on the surface of MRGO, promoting the magnetic properties of the nanocomposites. FTIR identification analysis revealed that the chitosan/pluronic F127 were successfully immobilized on the surface of MRGO. Furthermore, α-mangosteen, as a model of natural drug compound, was successfully encapsulated onto the chitosan/pluronic F127@MRGO nanocomposites. According to in-vitro cytotoxicity assay, α-mangosteen-loaded chitosan/pluronic F127@MRGO nanocomposites could significantly reduce the proliferation of human breast cancer (MFC-7) cells. Eventually, it would be anticipated that the novel α-mangosteen-loaded chitosan/pluronic F127@MRGO nanocomposites could be promoted as a new potential material for magnetically targeting and killing cancer cells.

Cite

CITATION STYLE

APA

Hardiansyah, A., Randy, A., Dewi, R. T., Angelina, M., Yudasari, N., Rahayu, S., … Liu, T. Y. (2022). Magnetic Graphene-Based Nanosheets with Pluronic F127-Chitosan Biopolymers Encapsulated α-Mangosteen Drugs for Breast Cancer Cells Therapy. Polymers, 14(15). https://doi.org/10.3390/polym14153163

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free