Food packaging has been demonstrated as a crucial issue for the migration of microplastics (MPs) into foodstuffs, concerning human health risk factors. Polymeric materials called plastics are continuously utilized in food packaging. Polyethylene (PE) is commonly used as a food packaging material, because it offers easy handling during transportation and optimal storage conditions for food preservation. In this work, three types of cured meat products of different fat compositions and meat processing methods—bacon, mortadella, and salami—were studied using spectroscopic methods (Raman and FT–IR/ATR) to determine the migration of low-density polyethylene (LDPE) from plastic packaging to the surface of the meat samples. The experimental duration of this study was set to be 28 days owing to the selected meat samples’ degradation, which started to become visible to the human eye after 10 days of storage in vacuum LDPE packaging, under refrigerated conditions at 4 °C. Spectroscopic measurements were performed at 0, 3, 9, 12, 15, and 28 days of storage to obtain comparative results. We demonstrated that the Raman spectral peaks of LDPE firstly appeared as a result of polymeric migration on day 9 in Bacon, on day 15 in Salami, and finally on day 28 in Mortadella. On day 28, all meat samples were tainted, with a layer of bacterial outgrowth developed, as proven by bright–field microscopic observation. Food packaging migration to the surface of cured meat samples was validated using Raman vibrational spectroscopy. To ensure minimal consumption of MPs in cured meat products stored in plastic packaging, while at the same time maintaining good food quality, they should be kept in refrigerated conditions and consumed within a short period of time. In this work, the migration of MPs from food packaging to the surface of cured meat samples was observed using micro-Raman spectroscopy.
CITATION STYLE
Katsara, K., Kenanakis, G., Alissandrakis, E., & Papadakis, V. M. (2022). Low-Density Polyethylene Migration from Food Packaging on Cured Meat Products Detected by Micro-Raman Spectroscopy. Microplastics, 1(3), 428–439. https://doi.org/10.3390/microplastics1030031
Mendeley helps you to discover research relevant for your work.