A nonparametric method for separating photosynthesis and respiration components in CO2 flux measurements

21Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Future climate change is expected to affect ecosystem-atmosphere CO 2 exchange, particularly through the influence of temperature. To date, however, few studies have shown that differences in the response of net ecosystem CO2 exchange (NEE) to temperature among ecosystems can be explained by differences in the photosynthetic and respiratory processes that compose NEE. Using a new nonparametric statistical model, we analyzed data from four forest ecosystems. We observed that differences among forests in their ability to assimilate CO2 as a fianction of temperature were attributable to consistent differences in the temperature dependence of photosynthesis and respiration. This observation provides empirical validation of efforts to develop models of NEE from the first-principle relationships between photosynthetic and respiratory processes and climate. Our results also showed that models of seasonal dynamics in NEE that lack specific consideration of the temperature dependence of respiration and photosynthesis are likely to carry significant uncertainties. Copyright 2004 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Yi, C., Li, R., Bakwin, P. S., Desai, A., Ricciuto, D. M., Burns, S. P., … Monson, R. K. (2004). A nonparametric method for separating photosynthesis and respiration components in CO2 flux measurements. Geophysical Research Letters, 31(17). https://doi.org/10.1029/2004GL020490

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free