A two stage bayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts

85Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper presents a new Two Stage Bayesian Stochastic Dynamic Programming (TS-BSDP) model for real time operation of cascaded hydropower systems to handle varying uncertainty of inflow forecasts from Quantitative Precipitation Forecasts. In this model, the inflow forecasts are considered as having increasing uncertainty with extending lead time, thus the forecast horizon is divided into two periods: the inflows in the first period are assumed to be accurate, and the inflows in the second period assumed to be of high uncertainty. Two operation strategies are developed to derive hydropower operation policies for the first and the entire forecast horizon using TS-BSDP. In this paper, the newly developed model is tested on China's Hun River cascade hydropower system and is compared with three popular stochastic dynamic programming models. Comparative results show that the TS-BSDP model exhibits significantly improved system performance in terms of power generation and system reliability due to its explicit and effective utilization of varying degrees of inflow forecast uncertainty. The results also show that the decision strategies should be determined considering the magnitude of uncertainty in inflow forecasts. Further, this study confirms the previous finding that the benefit in hydropower generation gained from the use of a longer horizon of inflow forecasts is diminished due to higher uncertainty and further reveals that the benefit reduction can be substantially mitigated through explicit consideration of varying magnitudes of forecast uncertainties in the decision-making process.

Cite

CITATION STYLE

APA

Xu, W., Zhang, C., Peng, Y., Fu, G., & Zhou, H. (2014). A two stage bayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts. Water Resources Research, 50(12), 9267–9286. https://doi.org/10.1002/2013WR015181

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free