Secreted frizzled-related protein-1 (SFRP1) is a negative regulatory molecule of the WNT signaling pathway and serves as a therapeutic target for bone formation in osteoporosis. In this study, we first established an ovariectomized (OVX) rat model to simulate postmenopausal osteoporosis and found significant changes in miR-542-3p and sFRP1 expression by RNA sequencing and qRT-PCR. In addition, there was a significant negative correlation between miR-542-3p and sFRP1 mRNA levels in postmenopausal women with osteoporosis. We found that miR-542-3p inhibited the expression of sFRP1 mRNA by luciferase reporter assay. When the miR-542-3p binding site in sFRP1 3'UTR was deleted, it did not affect its expression. Western blot results showed that miR-542-3p inhibited the expression of SFRP1 protein. The expression of SFRP1 was significantly increased in osteoblast-induced mesenchymal stem cells (MSC), whereas the expression of miR-542-3p was significantly decreased. And miR-542-3p transfected MSCs showed a significant increase in osteoblast-specific marker expression, indicating that miR-542-3p is necessary for MSC differentiation. Inhibition of miR-542-3p reduced bone formation, confirmed miR-542-3p play a role in bone formation in vivo. In general, these data suggest that miR-542-3p play an important role in bone formation via inhibiting SFRP1 expression and inducing osteoblast differentiation.
CITATION STYLE
Zhang, X., Zhu, Y., Zhang, C., Liu, J., Sun, T., Li, D., … Teng, Z. (2018). miR-542-3p prevents ovariectomy-induced osteoporosis in rats via targeting SFRP1. Journal of Cellular Physiology, 233(9), 6798–6806. https://doi.org/10.1002/jcp.26430
Mendeley helps you to discover research relevant for your work.