SNF-10 connects male-derived signals to the onset of sperm motility in C. elegans

  • Fenker K
  • Stanfield G
N/ACitations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sperm from the nematode C. elegans gain motility during a process termed activation, which they initiate in response to specific environmental signals. During this process, a number of subcellular rearrangements occur, culminating in an altered morphology that allows the cell to crawl toward and fertilize oocytes. Both hermaphrodites and males produce sperm, and redundant, sex-biased pathways regulate the sperm's activation. The male-derived signal for sperm activation involves TRY-5, a trypsin-like serine protease in seminal fluid, but until recently it was unknown what factors were active downstream of TRY-5. In our recent paper, we reported the discovery of SNF-10, a solute carrier 6 (SLC6) family protein that is expressed by sperm and connects the activation signal to changes in sperm morphology and, ultimately, the onset of motility. Here, we review our recent results, focusing on potential models for SNF-10's function in C. elegans, and additionally discuss the role SLC6 transporters may play in male reproductive biology from invertebrates to mammals.

Cite

CITATION STYLE

APA

Fenker, K. E., & Stanfield, G. M. (2015). SNF-10 connects male-derived signals to the onset of sperm motility in C. elegans. Worm, 4(1), e1003002. https://doi.org/10.1080/21624054.2014.1003002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free