The Distributionally Robust Optimization Reformulation for Stochastic Complementarity Problems

5Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

We investigate the stochastic linear complementarity problem affinely affected by the uncertain parameters. Assuming that we have only limited information about the uncertain parameters, such as the first two moments or the first two moments as well as the support of the distribution, we formulate the stochastic linear complementarity problem as a distributionally robust optimization reformation which minimizes the worst case of an expected complementarity measure with nonnegativity constraints and a distributionally robust joint chance constraint representing that the probability of the linear mapping being nonnegative is not less than a given probability level. Applying the cone dual theory and S-procedure, we show that the distributionally robust counterpart of the uncertain complementarity problem can be conservatively approximated by the optimization with bilinear matrix inequalities. Preliminary numerical results show that a solution of our method is desirable.

References Powered by Scopus

Maxmin expected utility with non-unique prior

2588Citations
N/AReaders
Get full text

Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications

1499Citations
N/AReaders
Get full text

Distributionally robust optimization under moment uncertainty with application to data-driven problems

1332Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Uncertainty Quantification in Variational Inequalities: Theory, Numerics, and Applications

29Citations
N/AReaders
Get full text

Toward machine wald

5Citations
N/AReaders
Get full text

New Robust Reward-Risk Ratio Models with CVaR and Standard Deviation

3Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Xu, L., Yu, B., & Liu, W. (2014). The Distributionally Robust Optimization Reformulation for Stochastic Complementarity Problems. Abstract and Applied Analysis, 2014. https://doi.org/10.1155/2014/469587

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

75%

Lecturer / Post doc 1

25%

Readers' Discipline

Tooltip

Mathematics 4

80%

Computer Science 1

20%

Save time finding and organizing research with Mendeley

Sign up for free