A novel spatial tessellation scheme, spatial chromatic tessellation (SCT), is proposed for representing and exploring space-entity relationship. The objective of this article is briefly introducing the basic concepts, structure, and properties of SCT. Our study mainly focuses on the arranged chromatic diagram (ACD), which is the most typical type of SCT. A few examples show that ACD can be used to analyze spatial topology, statistics, computations, database, and Voronoi diagrams. ACD also contains many implications on spatial analysis theory. With respect to each entity in a space, SCT partitions the space into a number of small unit cells and gives each cell a unique chromatic code. The spatial topological relationships among these cells are able to be represented and computed by their codes. Based on the different statistical rules on cellular codes, cells could be merged into larger clusters, such as a variety of Voronoi diagrams. Moreover, because cells are coded with the same data structure, it is easy to store and manage these codes in relational database, and then any spatial analytical operation could be realized simply by structured queries. SCT establishes a basic framework that not only provides a theoretical tool for spatial analysis and computations but also helps us to understand the space-entity relationship insightfully. © 2010 Taylor & Francis.
CITATION STYLE
Zhu, W., & Yu, Q. (2010). Spatial chromatic tessellation: Conception, interpretation, and implication. Annals of GIS, 16(4), 237–254. https://doi.org/10.1080/19475683.2010.539983
Mendeley helps you to discover research relevant for your work.