Rapid recognition and categorization of sounds are essential for humans and animals alike, both for understanding and reacting to our surroundings and for daily communication and social interaction. For humans, perception of speech sounds is of crucial importance. In real life, this task is complicated by the presence of a multitude of meaningful non-speech sounds. The present behavioural, magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) study was set out to address how attention to speech versus attention to natural non-speech sounds within complex auditory scenes influences cortical processing. The stimuli were superimpositions of spoken words and environmental sounds, with parametric variation of the speech-to-environmental sound intensity ratio. The participants' task was to detect a repetition in either the speech or the environmental sound. We found that specifically when participants attended to speech within the superimposed stimuli, higher speech-to-environmental sound ratios resulted in shorter sustained MEG responses and stronger BOLD fMRI signals especially in the left supratemporal auditory cortex and in improved behavioural performance. No such effects of speech-to-environmental sound ratio were observed when participants attended to the environmental sound part within the exact same stimuli. These findings suggest stronger saliency of speech compared with other meaningful sounds during processing of natural auditory scenes, likely linked to speech-specific top-down and bottom-up mechanisms activated during speech perception that are needed for tracking speech in real-life-like auditory environments.
CITATION STYLE
Renvall, H., Seol, J., Tuominen, R., Sorger, B., Riecke, L., & Salmelin, R. (2021). Selective auditory attention within naturalistic scenes modulates reactivity to speech sounds. European Journal of Neuroscience, 54(10), 7626–7641. https://doi.org/10.1111/ejn.15504
Mendeley helps you to discover research relevant for your work.