The Sea Level Budget Since 2003: Inference on the Deep Ocean Heat Content

46Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study provides an overview of the various components of the global mean sea level evolution over two time spans: (1) 2005–2012 (corresponding to the full deployment of the Argo program) and (2) 2003–2012. Using a sea level budget approach, we compare altimetry-based global mean sea level, global ocean mass from GRACE space gravimetry and steric sea level from Argo and other in situ measurements. One goal of this study is to investigate whether it is possible to constrain the deep ocean contribution to the global mean sea level rise over the last decade. This question is particularly relevant, considering the current debate about the ‘hiatus,’ i.e., the observed recent pause of the global mean air and sea surface temperature evolution while the planet is still in thermal imbalance. We consider a total of 16 different data sets. Differences are noticed between data sets related to each variable (sea level, ocean mass and steric sea level), mostly due to data processing issues. Therefore, we perform the analysis using averages of the available data sets. For each period, we find that, when removing from the global mean sea level, the contributions of the global mean ocean mass and steric sea level (estimated for the 0–1,500 m ocean layer), there remains a residual signal displaying a positive slope of 0.3 ± 0.6 and 0.55 ± 0.6 mm/year over 2005–2012 and 2003–2012, respectively. Comparing with an ocean reanalysis and according to direct (but sparse) ocean temperature measurements below 1,500 m, it seems unlikely that the observed residual signal can be attributed to deep (below 1,500 m) ocean warming, in agreement with other recently published results. We estimate that it possibly reflects, at least partly, the signature of a missing upper ocean steric signal in regions uncovered by current observing systems. Our study also shows a steady warming increase since 2003 of the 700–1,500 m ocean layer (amounting ~0.2 mm/year in steric sea level equivalent), confirming previous findings, but seen in our study in each of the eight different steric data sets considered.

Cite

CITATION STYLE

APA

Dieng, H. B., Palanisamy, H., Cazenave, A., Meyssignac, B., & von Schuckmann, K. (2015, March 1). The Sea Level Budget Since 2003: Inference on the Deep Ocean Heat Content. Surveys in Geophysics. Kluwer Academic Publishers. https://doi.org/10.1007/s10712-015-9314-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free