Highly-efficient release of ferulic acid from agro-industrial by-products via enzymatic hydrolysis with cellulose-degrading enzymes: Part i–the superiority of hydrolytic enzymes versus conventional hydrolysis

25Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

Historically Triticum aestívum L. and Secale cereále L. are widely used in the production of bakery products. From the total volume of grain cultivated, roughly 85% is used for the manufacturing of flour, while the remaining part is discarded or utilized rather inefficiently. The limited value attached to bran is associated with their structural complexity, i.e., the presence of cellulose, hemicellulose, and lignin, which makes this material suitable mostly as a feed supplement, while in food production its use presents a challenge. To valorize these materials to food and pharmaceutical applications, additional pre-treatment is required. In the present study, an effective, sustainable, and eco-friendly approach to ferulic acid (FA) production was demonstrated through the biorefining process accomplished by non-starch polysaccharides degrading enzymes. Up to 11.3 and 8.6 g kg−1 of FA was released from rye and wheat bran upon 24 h enzymatic hydrolysis with multi-enzyme complex Viscozyme® L, respectively.

Cite

CITATION STYLE

APA

Juhnevica-Radenkova, K., Kviesis, J., Moreno, D. A., Seglina, D., Vallejo, F., Valdovska, A., & Radenkovs, V. (2021). Highly-efficient release of ferulic acid from agro-industrial by-products via enzymatic hydrolysis with cellulose-degrading enzymes: Part i–the superiority of hydrolytic enzymes versus conventional hydrolysis. Foods, 10(4). https://doi.org/10.3390/foods10040782

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free