Oxysterols, via activation of liver X receptor (LXR), regulate keratinocyte differentiation by stimulating transglutaminase cross-linking of several constituent proteins leading to the formation of the cornified envelope. We previously reported that oxysterols increase the expression of one of these cross-linked proteins, involucrin, and that this effect can be abolished by mutations of the distal activator protein (AP)-1 response element in the involucrin promoter. Furthermore, oxysterols increase AP-1 binding in an electrophoretic gel mobility shift assay and increase the expression of an AP-1 reporter. In this study, we describe the individual components of the AP-1 complex that are involved in the oxysterol-mediated AP-1 activation and stimulation of keratinocyte differentiation. We identified Fra-1 within the AP-1 DNA binding complex by supershift analysis of nuclear extracts from oxysterol-treated, cultured keratinocytes and confirmed that oxysterol treatment increased the levels of Fra-1 by western blot analysis. Additionally, on Western and Northern analysis, oxysterol treatment increased two other AP-1 proteins, Jun-D and c-Fos, whereas Fra-2, Jun-B, and c-Jun were not changed. Similar alterations in AP-1 proteins occurred when 25-OH-cholesterol or non-steroidal LXR agonists (GW3965, TO-901317) were used. These results indicate that oxysterols induce specific AP-1 proteins, thereby activating involucrin, one of the genes required for epidermal differentiation.
CITATION STYLE
Schmuth, M., Elias, P. M., Hanley, K., Lau, P., Moser, A., Willson, T. M., … Feingold, K. R. (2004). The effect of LXR activators on AP-1 proteins in keratinocytes. Journal of Investigative Dermatology, 123(1), 41–48. https://doi.org/10.1111/j.0022-202X.2004.22707.x
Mendeley helps you to discover research relevant for your work.