The mean hue of flickering waveforms comprising only the first two harmonics depends on their temporal alignment. We evaluate explanatory models of this hueshift effect using previous data obtained using L- and Mcone- isolating stimuli together with chromatic sensitivity and hue discrimination data. The key questions concerned what type of nonlinearity produced the hue shifts, and where the nonlinearities lay with respect to the early band-pass and late low-pass temporal filters in the chromatic pathways. We developed two plausible models: (a) a slew-rate limited nonlinearity that follows both early and late filters, and (b) a half-wave rectifying nonlinearity-consistent with the splitting of the visual input into ON- and OFF-channels-that lies between the early and late filters followed by a compressive nonlinearity that lies after the late filter.
Mendeley helps you to discover research relevant for your work.