Self-stabilizing microprocessor analyzing and overcoming soft-errors (Extended abstract)

8Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Soft-errors are changes in memory value caused by cosmic rays. Decrease in computing features size, decrease in power usage and shorting the micro-cycle period, enhances the influence of soft-errors. Self-stabilizing systems is designed to be started in an arbitrary, possibly corrupted state, due to, say, soft errors, and to converge to a desired behavior. Self-stabilization is defined by the state space of the components, and essentially is a well founded, clearly defined, form of the terms: self-healing, automatic-recovery, automatic-repair, and autonomic-computing. To implement a self-stabilizing system one needs to ensure that the micro-processor that executes the program is self-stabilizing. The self-stabilizing microprocessor copes with any combination of soft errors, converging to perform fetch-decode-execute in fault free periods. Still, it is important that the micro-processor will avoid convergence periods as possible, by masking the effect of soft errors immediately. In this work we present design schemes for self-stabilizing microprocessor, and a new technique for analyzing the effect of soft errors. Previous schemes for analyzing the effect of soft errors were based on simulations. In contrast, our scheme computes lower bound on the micro-processor reliability and enables the micro-processor designer to evaluate the reliability of the design, and to identify reliability bottlenecks. © Springer-Verlag 2004.

Cite

CITATION STYLE

APA

Dolev, S., & Haviv, Y. A. (2004). Self-stabilizing microprocessor analyzing and overcoming soft-errors (Extended abstract). Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2981, 31–46. https://doi.org/10.1007/978-3-540-24714-2_5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free