Kidney exchange, where candidates with organ failure trade incompatible but willing donors, is a life-saving alternative to the deceased donor waitlist, which has inadequate supply to meet demand. While fielded kidney exchanges see huge benefit from altruistic kidney donors (who give an organ without a paired needy candidate), a significantly higher medical risk to the donor deters similar altruism with livers. In this paper, we begin by exploring the idea of large-scale liver exchange, and show on demographically accurate data that vetted kidney exchange algorithms can be adapted to clear such an exchange at the nationwide level. We then propose cross-organ donation where kidneys and livers can be bartered for each other. We show theoretically that this multi-organ exchange provides linearly more transplants than running separate kidney and liver exchanges. This linear gain is a product of altruistic kidney donors creating chains that thread through the liver pool; it exists even when only a small but constant portion of the donors on the kidney side of the pool are willing to donate a liver lobe. We support this result experimentally on demographically accurate multi-organ exchanges. We conclude with thoughts regarding the fielding of a nationwide liver or joint liver-kidney exchange from a legal and computational point of view.
CITATION STYLE
Dickerson, J. P., & Sandholm, T. (2017). Multi-organ exchange. Journal of Artificial Intelligence Research, 60, 639–679. https://doi.org/10.1613/jair.4919
Mendeley helps you to discover research relevant for your work.