Structure Evolution and Bonding Inhomogeneity toward High Thermoelectric Performance in Cu2CoSnS4-xSex Materials

11Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Lightweight diamond-like structure (DLS) materials are excellent candidates for thermoelectric (TE) applications due to their low costs, eco-friendly nature, and property stability. The main obstacles restricting the energy-conversion performance by the lightweight DLS materials are high lattice thermal conductivity and relatively low carrier mobility. By investigating the anion substitution effect on the structural, microstructural, electronic, and thermal properties of Cu2CoSnS4-xSex, we show that the simultaneous enhancement of the crystal symmetry and bonding inhomogeneity engineering are effective approaches to enhance the TE performance in lightweight DLS materials. Particularly, the increase of x in Cu2CoSnS4-xSex makes the DLS structure with the ideal tetrahedral bond angles of 109.5° favorable, leading to better crystal symmetry and higher carrier mobility in samples with higher selenium content. In turn, the phonon transport in the investigated DLS materials is strongly disturbed due to the bonding inhomogeneity between anions and three sorts of cations inducing large lattice anharmonicity. The increase of Se content in Cu2CoSnS4-xSex only intensified this effect resulting in a lower lattice component of the thermal conductivity (κL) for Se-rich samples. As a result of the enhanced power factor S2ρ-1 and the low κL, the dimensionless thermoelectric figure of merit ZT achieves a high value of 0.75 for Cu2CoSnSe4 DLS material. This work demonstrates that crystal symmetry and bonding inhomogeneity play an important role in the transport properties of DLS materials and provide a path for the development of new perspective materials for TE energy conversion.

Cite

CITATION STYLE

APA

Parashchuk, T., Cherniushok, O., Smitiukh, O., Marchuk, O., & Wojciechowski, K. T. (2023). Structure Evolution and Bonding Inhomogeneity toward High Thermoelectric Performance in Cu2CoSnS4-xSex Materials. Chemistry of Materials, 35(12), 4772–4785. https://doi.org/10.1021/acs.chemmater.3c00586

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free